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Parallelization of Rotorcraft Aerodynamics Navier–Stokes Codes
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The modi� cation of unsteady three-dimensional Navier–Stokes codes for application on massively parallel and
distributed computing environments is investigated. Previously, the Euler mode of the Navier–Stokes code TURNS
has been parallelized. For the ef� cient implementationof the Navier–Stokesmode of TURNS on parallel computing
systems, several algorithmic changes should be made. The main modi� cation is done on the implicit operator,
lower–upper symmetric Gauss–Seidel. Two new implicit operators are used because of convergence problems of
traditional operators with high cell aspect ratio grids needed for viscous calculations. Results for Navier–Stokes
cases are presented for various operators. The message passing interface protocol is used because of its portability
to various parallel architectures.

Nomenclature
a = speed of sound
e = total energy
p = pressure
Pr = Prandtl number
Re = Reynolds number
u; v; w = Cartesian velocities
x; y; z = Cartesian coordinates
° = speci� c heat ratio
¹ = dynamic viscosity
»; ´; ³ = generalized coordinates
½ = density
9 = rotor azimuth angle

Introduction

R OTORCRAFT aerodynamicsare very complex becausethree-
dimensional unsteady transonic viscous aerodynamic phe-

nomena are involved. The ability to predict the � ow around heli-
copter rotors is vital for the control of high-speed losses, vibration,
and noise. The advent of tilt-rotor aircraft in the past few years
further complicates rotor aerodynamics.

Computational� uiddynamics(CFD)hasprovento be aneffective
tool for predictionof rotorcraftaerodynamicsand noise. Traditional
CFD methods used for this purpose have included transonic small
disturbancepotential models and full-potentialmodels.1;2 Whereas
potentialmethodscan generatea good solutionat relativelylow cost,
theyareunableto resolvesome � owfeaturesthat canhavea large im-
pact on the aerodynamic and aeroacoustic properties. For instance,
the vorticalwake producedby the rotor blades plays a dominant role
in unsteady load � uctuation, affecting aerodynamic performance.
Also, shocks produced by transonic � ow near the blade tip, often
encountered in forward � ight, have a large effect on the high-speed
impulsive noise generated by the blades and consequently must be
determined accurately.For these reasons, many more recent design
analyses3 use Euler/Navier–Stokes methods.

However,Navier–Stokes methods tend to be computationallyde-
manding,whichhasdelayedtheirwidespreadindustrialuse.Parallel
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computation offers the potential for cheaper and faster computa-
tions. Several vendors have released machines that utilize com-
modity reduced instruction set computer (RISC) processors that
are the same as those used in high-end workstations, for example,
IBM SP2 and SGI Origin. These machines generally attain bet-
ter price/performance than vector processors and have peak execu-
tion rates that are several times faster than vector parallel machines
such as the Cray C-90. It is also possible to assemble a collec-
tion of off-the-shelf hardware components and software packages
and achieve high performance at very low prices.4;5 Several com-
panies are beginning to utilize parallel processing in the form of
networked workstations, which sit idle during off hours, to attain
supercomputerperformance.6 Unfortunately,many traditionalCFD
algorithms were developedwith serial or vectorizedcomputationin
mind, and consequentlyrequiresigni� cant modi� cation for ef� cient
parallel execution.Also, a certain amount of code rewriting, for ex-
ample, adding message passing calls, is necessary, which can be
a signi� cant time investment for long and well-established codes.
These factors have been deterrents to more widespread industrial
adoption of parallel processing.

The current study focuses on efforts to improve the ef� ciency of
the TURNS code developedby Srinivasanet al.7 and Srinivasanand
Baeder.8 TURNS is chosen becauseit providesa well-known indus-
try standardfor rotorcraftaerodynamics.The codeuses a third-order
accurate,upwindbiasedscheme thatprovidesshockcapturing.Flux
limiters are appliedso that the scheme is total variationdiminishing.

In TURNS the main bottleneckfor the paralleloptimizationis the
lower–upper symmetric Gauss–Seidel (LU-SGS) implicit operator,
currently used for both steady and unsteady calculations with the
code. Candler et al.9 developed an ef� cient algorithm called data
parallel lower–upper relaxation (DP-LUR) to parallelize LU-SGS
for a data parallel environment.Wissink et al.10¡12 developeda new
hybrid domain decomposition implementation of the LU-SGS and
DP-LUR operators and applied it to the Euler mode of TURNS
successfully. This method can be extended to the Navier–Stokes
equations. However, the LU-SGS algorithm exhibits poor conver-
gence for the high-cell-aspect-ratio (CAR) grids needed to resolve
theboundarylayer of highReynolds� ows, as shown, for example,in
Refs. 13 and 14. Wright et al.15 proposed a full matrix modi� cation
of the LU relaxation method that works well for the high-aspect-
ratio grids. In addition, Wright et al.16 also developed another type
of full matrix method, data parallel line relaxation(DPLR), which is
even better for the high-aspect-ratiogrids. Neither of these methods
have been tested for three-dimensionalunsteady � ows.

The focus of this study is to develop a new hybrid method similar
to that of Wissink using the full matrix approach and to apply this
new algorithm together with DPLR to TURNS for the ef� cient par-
allelizationof rotorcraftaerodynamicscodes.Note that the LU-SGS
algorithmhas been used in a number of well-known CFD codes, for
example, INS3D17 and OVERFLOW,18 primarily for its stability
properties with larger time steps. Therefore, our proposed paral-
lelization methodologywill be applicable to several Navier–Stokes
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codes. Message passing interface (MPI) will be used because of its
portability to different parallel architectures.

Governing Equations
The nondimensional conservation law form of the three-

dimensional, thin-layer Navier–Stokes equations in curvilinear
space »; ´; ³ , and ¿ can be written as19;20
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The contravariant velocities in the preceding equations, namely,
U; V ; and W , are de� ned as

U D »t C »x u C »y v C »zw

V D ´t C ´x u C ´yv C ´zw

W D ³t C ³x u C ³yv C ³zw (3)

The quantitiessuch as »x ; »y; and »z are the metrics of the coordinate
transformation, and J is the Jacobian of the transformation. The
viscous � ux vector for the thin layer approximation S is given by
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where

m D 0:5.u2 C v2 C w2/³ C [1=Pr.° ¡ 1/].a2/³

n D .³x u C ³yv C ³zw/

For the turbulent viscous � ows, the viscosity coef� cient ¹ is com-
puted as the sum of the laminar viscosity coef� cient ¹l estimated
using Sutherland’s law and the turbulent viscosity ¹t estimated us-
ing the Baldwin–Lomax algebraic turbulence model. The pressure
can be obtained from the equation of state given as

p D .° ¡ 1/fe ¡ .½=2/.u2 C v2 C w2/g (5)

Numerical Method
The � rst-order implicitEuler integrationin time gives the follow-

ing form of the equations:
£
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is the � ux evaluated using the upwind-biased scheme of Roe21 at
time leveln; A, B, and C are the inviscidJacobiansgivenby Pulliam
and Steger20; and M is the viscous Jacobian given by Tysinger and
Caughey.22 The monotone upstream-centered scheme of Anderson

et al.23 for the conservativelaws (MUSCL) is used to get high-order
accuracy with � ux limiters. First, a � ux vector splitting is applied
to the � ux Jacobians A, B, and C , of the inviscid � ux vectors E ,
F , and G . In the » direction, A is split into its positive and negative
eigenvalueparts, A D AC C A¡, and the positivematrix is backward
differenced,whereasthe negativematrix is forwarddifferenced.The
same technique is applied to the other inviscid Jacobians in the cor-
responding directions. The viscous Jacobian M , on the other hand,
is simply central differenced in ³ direction. When the backward
differencedC terms in L and the forward differenced¡ terms in U
are collected, the system can be divided into lower and upper block-
tridiagonal factors with a diagonal factor given by
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Second, to avoid costly computation times for the inversion of the
5 £ 5 D matrix, an ef� cient spectral radius approximationproposed
by Yoon and Kwak14 is applied to the � ux Jacobians:

A§ D 1
2 .A § ½A I / (9)

where ½A is the spectral radius of A in the » direction.This approx-
imation results in a very simple form of D:

D D I C 1¿ .½A I C ½B I C ½C I C 2½M I / j;k;l (10)

for which the inversion is just a scalar operation.
The LU-SGS schemeproposedby Yoon andJameson24 is used for

the time integration of the implicit equations. The resulting system
of equations is solved by applying a two-step symmetric Gauss–

Seidel algorithm as follows:

L1q¤ D ¡1¿ f .qn/; U1qn D D1q¤ (11)

InEq. (11), 1q¤ is the intermediatesolutionand 1qn is the updateto
the vector of dependent variables at time step n, qn C 1 D qn C 1qn .
Note that the approximationsare made only to the left-hand side of
the system to improve the convergence to the steady-state solution;
hence, they will not effect the accuracy of the scheme.

Time Accuracy
The implicitalgorithmimplementedin TURNS is usedfor steady-

state as well as time-accurate solutions. For steady-state problems,
a � rst-order scheme in time is used, and the convergence to the
steady state is acceleratedusing large time steps. On the other hand,
for time-accurate problems, the equations are integrated through
time using a second-orderscheme starting from a meaningful initial
condition, usually the steady-state solution. In this case, the time
step is chosen according to the timescale of the problem.

LU-SGS has some factorizationerror associatedwith the approx-
imations made on the left-hand side of the algorithm. This destroys
the good convergencecharacteristicsin large time steps for steady-
state solutions and puts a limit to the size of the time steps used.
In addition, for time-accurate solutions, the factorization error still
exists, but it can be reduced by using inner relaxation steps.

For steady-state problems one can vary 1¿ in space, which can
be interpreted as an attempt to use a uniform Courant–Friedrichs–

Lewy number throughoutthe � ow� eld. The space-varyingtime step
approach is especially effective for grids that have very � ne to very
coarse spacings in the domain. The Navier–Stokes grids used in this
study are good examples of such wide variety length scale grids. In
TURNS, a purely geometric variation of the time-step approach is
used25;26 in the following form:

1¿ D 1¿ jref
1 C "

p
J

1 C
p

J
(12)

to accelerate the steady-stateconvergence.In Eq. (12), 1¿ jref is the
� xed reference time step, " is a small constant, for example, 0.002,
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and J is the Jacobian of the transformation.On the other hand, for
unsteady solutions, the time step used in the calculations is a � xed
value.

Boundary Conditions
The boundaryconditionsare appliedexplicitly,which means that

the values of the conserved variables are updated at the end of each
iteration. The Cartesian velocities u; v, and w are calculated from
the extrapolationof the contravariantvelocities.On the surface, the
tangency condition is imposed for the Euler calculations, whereas
a no-slip condition is imposed for the Navier–Stokes calculations.
These two conditionsrequire the contravariantvelocities W D 0 and
U D V D W D 0, respectively. The density and the pressure on the
surface are calculated by zeroth-order extrapolations, whereas the
total energy is determined from the equation of state.

Parallelization
Previously, the parallelizationof the Euler mode of TURNS was

done by Wissink11 in a domain decomposition fashion using MPI
routines.The parallelizationof the code in multiple instructionmul-
tiple data (MIMD) fashion was chosen for two main reasons. First,
code rewriting from FORTRAN 77 to FORTRAN 90, which is re-
quired by single instruction multiple data, is avoided. Second, the
MIMD approachmakes theprogrammoreportableto differentkinds
of parallel architectures.

A simple domain decomposition strategy, which uses the values
from the previous iteration of the current time step on processor
boundaries, is chosen. This strategy was used before by Wissink
et al.,27 and no signi� cant degradationof performancewas observed
for up to 456 processors. The alternative, of course, is to do a for-
mal domain decomposition as explained in Ref. 28. However, this
approach is time consuming to implement in a legacy code, and
because the � rst, simple strategy has worked well previously, it was
used in this study.

The computational grid is decomposed to equally spaced parti-
tions to prevent load imbalance, and a copy of the code is run on
each processor.On the boundariesof each partition, an overlapping
strategy is used to calculate the conserved variables. For example,
the conserved variables on the left boundaries of each partition is
calculated as the last interior points near the right boundary of the
previous partition. Likewise, the conserved variables on the right
boundaries of each partition is calculated as the � rst interior points
near the left boundary of the next partition. This single overlap
strategy and a typical two-dimensional grid partitioning are given
in Figs. 1 and 2, respectively.

After all of the processors are done with their solutions, the val-
ues on the boundaries are sent to and received from the neighboring
processors using MPI SEND and MPI RECEIVE subroutines, and

Fig. 1 Single overlap strategy.

Fig. 2 Partitions of a typical two-dimensional grid.

the calculationsfor the next iterationcan be started. For small num-
ber of points per processor, we expect to see some performance
degradation because the boundary values are less accurate.

The partitioningof the grid is allowed only in the streamwise and
radial directions,as shown in Fig. 3, to eliminate the load imbalance
when applying the boundary conditions.

In addition, the grid collapses to a singular plane at outboard the
tip of the blade and across the wake. At these locations, to satisfy
the continuityof the � ow quantities,valuesare interpolatedbetween
the processorson each side of the singularplane. Partitioning in the
normal direction would make some of the processors sit idle while
the others would perform the interpolation,which would cause load
imbalance. Therefore, partitioning of the computational domain is
done in the streamwise and radial directions only.

Diagonal Operators
In this section, two parallel implicit operators that use the spec-

tral approximation of LU-SGS scheme previously implemented in
TURNS are described.The useof spectralapproximationretains the
ease of computation, as well as the advantage of using large time
steps for the steady-state solution.

LU-SGS Operator
The LU-SGS algorithm is the basis of the parallel implicit oper-

ators implemented in TURNS. In the two-step symmetric Gauss–

Seidel method (see Ref. 11), there are off-diagonal terms coming
from L and U on the left-hand side of both equations. If we move
these off-diagonal terms to the right-handside, the resulting system
becomes diagonal, and the updates of the conserved quantities can
easily be obtained. The algorithmfor the LU-SGS implicit operator
can be written as follows.

Algorithm 1(LU-SGS):

Do j; k; l D 1; : : : ; Jmax; Kmax; Lmax

1q¤
j;k;l D D¡11¿

£
¡ f .qn/ C AC

j ¡ 11q¤
j ¡ 1 C BC

k ¡ 11q¤
k ¡ 1

C CC
l ¡ 11q¤

l ¡ 1 C Ml ¡ 11q¤
l ¡ 1

¤

EndDo

Do j; k; l D Jmax; Kmax; Lmax; : : : ; 1

1qn
j;k;l D 1q¤

j;k;l ¡ D¡11¿
£
A¡

j C 11qn
j C 1 C B¡

k C 11qn
k C 1

C C¡
l C 11qn

l C 1 ¡ Ml C 11qn
l C 1

¤

EndDo
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Fig. 3 Partitioning strategy of the computational grid.

Fig. 4 Schematic diagram of LU-
SGS sweeps.

In the � rst step of the solution, the intermediatesolutionvector 1q¤

is obtained by sweeps that start form the lower left corner and pro-
ceed to the upper right corner of the computational grid. The � nal
solution is then obtained by sweeps in the reverse direction. The
direction of sweeps in the computationaldomain is shown in Fig. 4.
The LU-SGS method uses hyperplanes of different sizes through-
out the grid. Although this approach can easily be vectorized, it
is dif� cult to implement the method on the distributed-memory
computers because of the load balancing problems caused by the
variable-size hyperplanes and the large amount of communication
due to the recursion between planes. For example, if we look at
the forward sweep, the point . j; k; l/ can begin the computation
only when points . j ¡ 1; k; l/, . j; k ¡ 1; l/, and . j; k; l ¡ 1/ have
completed the step. Therefore, this data dependency causes load
balancingproblem, and not all of the processors can be kept busy at
the same time. Overall, the LU-SGS algorithmin its original form is
not very suitable for distributed-memoryparallelization,and hence,
some algorithmic changes should be made.

DP-LUR Operator
A very ef� cient point-relaxationimplementation of the LU-SGS

method for the data-parallel environment, DP-LUR, has been in-
troduced by Candler et al.9 for solving hypersonic � ow problems.
Basically, this method replaces the two symmetric Gauss–Seidel
sweeps with Jacobi sweeps and moves all of the off-diagonal terms
to the right-handside. The procedure for this method can be written
as follows.

Algorithm 2 (DP-LUR):

1q .0/

j;k;l D ¡D¡1 ¢ 1¿ f .qn/

Do i D 1; : : : ; isweep

Do j; k; l D 1; : : : ; Jmaxlocal ; Kmaxlocal ; Lmaxlocal

1q .i/
j;k;l D D¡11¿

£
¡ f .qn/ C AC

j ¡ 11q .i ¡ 1/
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k ¡ 11q.i ¡ 1/

k ¡ 1
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l ¡ 11q .i ¡ 1/
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l ¡ 1 ¡ A¡
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j C 1

¡ B¡
k C 11q .i ¡ 1/

k C 1 ¡ C ¡
l C 11q.i ¡ 1/

l C 1 C Ml C 11q.i ¡ 1/

l C 1

¤

EndDo

EndDo

1qn
j;k;l D 1q.isweep/

DP-LUR uses only the nearest neighbor data due to the point-
relaxation strategy and, therefore, allows simultaneous computa-
tions on multiple processors with each processor holding the local
data. The data that lie on the borders are communicated after each
domain sweep. This algorithm is implemented in TURNS in such
a way that the computations are completely load balanced with
communications occurring only at the borders of each partition. In
addition,becausethe algorithmis matrix free, it is memory ef� cient,
which allows us to solve large-size problems.

Although DP-LUR is more suitable for parallel computing, it
may needmore computationsto converge,comparedto the LU-SGS
method. The main reason for this is that a point-relaxationmethod
usuallyhas a lower rateof convergencethana Gauss–Seidelmethod.

Hybrid LU-SGS Operator
To reduce the computationsneeded for DP-LUR, Wissink et al.10

and Wissink11 have introduced a new algorithm that combines the
high convergence rate of LU-SGS with the ef� cient interprocessor
communication of DP-LUR. This method, called the hybrid LU-
SGS method,performs LU-SGS solutionslocally on each processor
and uses the point-relaxationsweeping of DP-LUR to communicate
the border data. The procedure is given as follows.

Algorithm 3 (Hybrid LU-SGS):

1q .0/

j;k;l D ¡D¡1 ¢ 1¿ f .qn/

Do i D 1; : : : ; isweep

Communicate border data 1q .i ¡ 1/

j;k;l

On the borders 1q¤
j;k;l D 1q .i ¡ 1/

j;k;l

Do j; k; l D 1; : : : ; Jmaxlocal ; Kmaxlocal ; Lmaxlocal

1q¤
j;k;l D D¡11¿

£
¡ f .qn/ C AC

j ¡ 11q¤
j ¡ 1 C BC

k ¡ 11q¤
k ¡ 1

C CC
l ¡ 11q¤

l ¡ 1 C Ml ¡ 11q¤
l ¡ 1

¤

EndDo

Do j; k; l D Jmax local ; Kmaxlocal ; Lmax local ; : : : ; 1

1qn
j;k;l D 1q¤

j;k;l ¡ D¡11¿
£
A¡

j C 11qn
j C 1 C B¡

k C 11qn
k C 1

C C¡
l C 11qn

l C 1 ¡ Ml C 11qn
l C 1

¤

EndDo

EndDo

1qn
j;k;l D 1q.isweep/
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The preceding diagonal methods, that is, LU-SGS, DP-LUR, and
hybrid LU-SGS, work well with the Euler mode of TURNS. How-
ever, when dealing with the high CAR grids, which are needed to
resolve the boundary layer in viscous � ows, they either show poor
or no convergence. This is mainly due to the spectral approxima-
tion, which overstabilizes the solution by dramatically increasing
the diagonal elements of D for high CAR grids.

Full Matrix Operators
To overcomethe convergenceproblemdue to the highCAR grids,

Wright et al.15;16 proposed a class of methods, which removes the
spectral approximation and uses the exact forms of the Jacobian
matrices. The Jacobian A can be split into positive and negative
parts as follows:

A D X A3A X ¡1
A

A D X A

¡
3C

A C 3¡
A

¢
X¡1

A D AC C A¡ (13)

where X A and X ¡1
A are the left- and right-eigenvector matrices

and 3A is the diagonal eigenvalue matrix. Knowing the right- and
left-eigenvector matrices and the eigenvalues of the inviscid � ux
Jacobians, the difference in the positive and negative parts can be
written as

AC ¡ A¡ D X A3C
A X ¡1

A ¡ X A3¡
A X ¡1

A

AC ¡ A¡ D X A j3A jX ¡1
A (14)

In addition, it is known that the sum of the positive and negative
parts is equal to the Jacobian itself. This leads us to the following
expressions:

D D I C 1¿
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A C X B j3B jX¡1
B

C XC j3C jX ¡1
C C 2M

¢
j;k;l
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¡
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¢¯
2
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¡
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A

¢¯
2 (15)

The nondiagonal terms on the right-hand side also use the exact
forms of the Jacobians for the full matrix methods. With the use of
the true split Jacobians, the solution becomes more computation-
ally and memory intensive than the diagonal versions. At each grid
point, the 5 £ 5 D matrix must be inverted and stored now. How-
ever, to decrease the memory needs, the off-diagonalJacobians are
computed on the � y and discarded at each inner sweep. Because
all of this additional computation is local, the amount of communi-
cation used is exactly the same as the diagonal method. Although
the amount of computation is greater than the diagonal method,
the use of the exact forms of the Jacobians increases the overall
convergence rate compared to the diagonal methods. The only sig-
ni� cant problem with this approach is that when the spectral radius
approximation is removed, smaller time steps must be used com-
pared to the diagonalmethods. However, experiencehas shown that
the full-matrix approach has a much higher convergence rate, and
the limitation on the time step is not important for the steady-state
problems.

Full Matrix Hybrid (FM-Hybrid) Operator
The idea of using the advantageof DP-LUR communication and

the LU-SGS convergence rate introduced by Wissink et al.10 and
Wissink11 can further be extended by the use of true Jacobians, to
enable handling of high CAR grids, in the LU-SGS algorithm. The
resulting new method, which will be called the full matrix hybrid
(FM-Hybrid) method, uses the full form of the Jacobians, solves
the problem using LU-SGS locally, and uses DP-LUR for inter-
processor communication. Because there is no change in the data
communication between the processors, the new algorithm needs
exactly the same amount of communication as the hybrid LU-SGS
method. The amount of computations is greater than the diagonal
method. However, the results show that this new method is better

than all of the previous ones in terms of the wallclock time used on
an IBM SP2 computer because the number of iterations needed is
much lower. The algorithm for this new method can be written as
follows.

Algorithm 4 (FM-Hybrid):

D¡1 D
¡
I C 1¿

¡
X A j3A jX ¡1

A C X B j3B jX ¡1
B

C XC j3C jX ¡1
C C 2M

¢
j;k;l

¢¡1

1q .0/

j;k;l D ¡D¡1 ¢ 1¿ f .qn/

Do i D 1; : : : ; isweep

Communicate border data 1q .i ¡ 1/

j;k;l

On the borders 1q¤
j;k;l D 1q .i ¡ 1/

j;k;l

Do j; k; l D 1; : : : ; Jmaxlocal ; Kmaxlocal ; Lmaxlocal

1q¤
j;k;l D D¡11¿

£
¡ f .qn/ C AC

j ¡ 11q¤
j ¡ 1 C BC

k ¡ 11q¤
k ¡ 1

C CC
l ¡ 11q¤

l ¡ 1 C Ml ¡ 11q¤
l ¡ 1

¤

EndDo

Do j; k; l D Jmax local ; Kmaxlocal ; Lmax local ; : : : ; 1

1qn
j;k;l D 1q¤

j;k;l ¡ D¡11¿
£
A¡

j C 11qn
j C 1 C B¡

k C 11qn
k C 1

C C¡
l C 11qn

l C 1 ¡ Ml C 11qn
l C 1

¤

EndDo

EndDo

1qn
j;k;l D 1q.isweep/

DPLR Operator
Anothermethod for the solutionof Navier–Stokes equationswith

high CAR grids, proposed by Wright et al.,16 is the last method to
be applied to TURNS. This method, DPLR, is based on the Gauss–

Seidel line relaxation (GSLR) method of MacCormack,29 and it
basicallymoves the off-diagonalterms in the body-normaldirection
³ on the right-hand side back to the left-hand side and solves a
block-tridiagonalsystemof equations.This makes theproblemmore
physical and stronglycoupledin ³ direction,where the viscous � ow
gradients are strongest. When started from Eqs. (11) and (8), the
resulting tridiagonal system can be written as

QC¡1qn
l C 1 C D1qn

l ¡ QCC1qn
l ¡ 1

D 1¿
£
¡ f .qn/ C AC

j ¡ 11qn
j ¡ 1 ¡ A¡

j C 11qn
j C 1

C BC
k ¡ 11qn

k ¡ 1 ¡ B¡
k C 11qn

k C 1

¤
(16)

where

QC¡ D 1¿
¡
C ¡

l C 1 ¡ Ml C 1

¢
; QCC D 1¿

¡
CC

l ¡ 1 C Ml ¡ 1

¢
(17)

The DPLR method uses a series of line-relaxation steps similar
to the point-relaxation stepping of DP-LUR, whereas the GSLR
method uses Gauss–Seidel sweeps. By the use of line relaxation,
which is similar to the point relaxation of the earlier methods, the
data dependencies are minimized, and the code can easily be par-
allelized. First, the left-hand side of Eq. (16) is decomposed to its
lower and upper matrices, and the resulting system is solved by
ignoring the off-diagonal terms on the right-hand side. Then, a se-
ries of inner sweeps are performed on the system using the solution
from the previous relaxation step. The algorithm can be written as
follows.
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Algorithm 5 (DPLR):

QC¡1q.0/

l C 1 C D1q.0/

l ¡ QCC1q.0/

l ¡ 1 D ¡1¿ f .qn/

Do i D 1; : : : ; isweep

Communicate border data

QC¡1q.i /
l C 1 C D1q.i/

l ¡ QCC1q .i/
l¡1 D 1¿

£
¡ f .qn/

C AC
j ¡ 11q .i ¡ 1/

j ¡ 1 ¡ A¡
j C 11q .i ¡ 1/

j C 1

C BC
k ¡ 11q .i ¡ 1/

k ¡ 1 ¡ B¡
k C 11q.i ¡ 1/

k C 1

¤

EndDo

1qn
j;k;l D 1q .isweep/

With the way TURNS is parallelizednow, all of the data in the body-
normal direction ³ are local (Fig. 2). Therefore, there are no data
dependency problems for the block-tridiagonalsystem, and the en-
tire procedure can be performed simultaneously in parallel. Wright
et al.16 have successfully implemented this algorithm to Navier–
Stokes equations and found that it is superior to the diagonal and
full-matrix DP-LUR algorithms. In this study, we will implement
DPLR in TURNS and compare its performance with the rest of
the implicit operators,especiallywith the new FM-Hybrid operator
introduced in the preceding section.

Results for Parallel Implicit Operators
To test and compare the convergencecharacteristicsof the differ-

ent methods, two-dimensional steady-state and three-dimensional
quasi-steadyand unsteady computationsare carried out in TURNS.
More detailed results can be found in Ref. 30. The two-dimensional
calculations are performed on 27 processors, whereas the quasi-
steady three-dimensionalcalculationsare performed on 36, and the
unsteady three-dimensional calculations are performed on 16 pro-
cessors. The 80-node 272-processorIBM SP2 computer of the Pur-
due University is used for the runs.

Two-Dimensional Steady-State Results
In this section two-dimensional,Navier–Stokes solutions for two

different airfoils are presented. First, solutions for a transonic � ow
around a Royal Aerospace Establishment (RAE) 2822 airfoil using
different implicit operators are presented and compared with the
experimentaldata.Second, the performanceof the implicitoperators
is investigatedfor a transonic � ow around a NACA 0012 airfoil for
grids with different cell aspect ratios.

All of the calculations are performed on 137 £ 50 C grids. The
partitioning of the grid in the wraparound direction gives each pro-
cessor7 grid points in the wraparounddirectionand 50grid pointsin
the normal direction. Nondimensional spatially varying time steps
1¿ are used for all methods to increase the convergence to steady
state. The value of the reference time step 1¿ jref used in Eq. (12)
is different for all methods. The diagonal operators usually allow
larger values compared to the full matrix methods. The runs are
stopped when the global density residual reached 1E¡11.

RAE 2822 Airfoil (CARmax D 19,400)
The accuracy of the serial and vectorizedversions of the TURNS

code has been previouslyvalidated in Refs. 7, 8, and 19. In this sec-
tion, we will investigate the numerical accuracy of the parallelized
version of the code using different implicit operators. For a steady-
state case, one expects to get identical results for different implicit
operators as long as the right-hand side of the system is kept the
same.

The two-dimensional viscous transonic numerical results are
compared with the experimental data of an RAE 2822 supercritical
airfoil. The experimental data are presented by Cook et al.31 and
are extensively used in the literature for code validation purposes.
The calculation here corresponds to case 6 with a freestream Mach
number of 0.726, an angle of attack of 2.92 deg, and a Reynolds
number of 6:5 £ 106. Because of the wall effects in the wind tunnel,

a correctionis necessaryin the angle of attack. In these calculations,
the value of the numerical angle of attack is taken to be 2.43 deg.
The outer boundary of the grid is located about eight chords from
the body. The minimum spacing of the grid in the normal direction
near the surface is 0.0001 chords,which correspondsto a maximum
CAR of 19,400. A section of the grid is shown in Fig. 5.

The surface pressure distributions for well-converged solutions
are presented in Fig. 6. The numerical solutions obtained using
different implicit operatorsare identical.This means that the choice
of the implicit method does not affect the accuracy. In addition, the
numerical results are in good agreementwith the experimental data
except for the locationof the shock. Although not shown here, plots
of the pressure and the Mach number contours for the converged
solution are also identical for all of the implicit operators.

NACA 0012 Airfoil (CARmax D 2200)
The main objective of this study is the ef� cient parallelization

of TURNS for the high CAR grids needed to resolve the bound-
ary layer of the viscous � ows. Therefore, only comparison for the
performance of the methods will be carried out from this point on.
However, note that the converged solutionsobtained using different
methods are identical and that the choice of the implicit operator
does not change the accuracy of the code.

Fig. 5 Computational grid around RAE 2822 airfoil.

Fig. 6 Computed and experimental pressure distributions for RAE
2822 airfoil.
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Fig. 7 Effect of number of inner sweeps on the wallclock time for FM-
Hybrid method.

The case testedhere is a two-dimensional,viscous,transonic� ow
arounda NACA 0012airfoilwith a freestreamMachnumberof 0.80,
a 0-deg angle of attack, and a Reynolds number of 2:75 £ 106 . The
maximum CAR is 2200 in the computational domain. The calcu-
lations are carried out for different reference time steps for each
method, and the values corresponding to the maximum allowable
time steps are used.

The effect of the number of inner sweeps is studied for different
implicit operators.In Fig. 7, the effect of the numberof inner sweeps
on convergence is shown for the FM-Hybrid method. For this case,
the method converges for all sweeps, and isweep D 2 has the best
convergencefor the wallclock time. Similarly, computationsfor the
other methods are also performed for different number of inner
sweeps, and isweep with the best convergence is chosen for each
method (isweep D 4 for DP-LUR, isweep D 1 for hybrid LU-SGS, and
isweep D 3 for DPLR).

When the optimal number of inner sweeps for each of the im-
plicit operators is found, the performance of the implicit methods
can be compared with each other (Fig. 8). The full matrix meth-
ods, DPLR and FM-Hybrid, have signi� cantly better convergence
compared to the diagonal methods, hybrid LU-SGS and DP-LUR.
The convergence criterion is met in 5.62 and 6.86 s for DPLR and
FM-Hybrid, and the global density residual is down to 4.47E ¡ 10
and 4.52E ¡ 09 for hybrid LU-SGS and DP-LUR in approximately
72 s.

The selection of the optimal number of inner sweeps for each
method by experimentationis not very practical because it requires
multiple runs of a case for the comparison of the best case per-
formance. Although, the number of inner sweeps for each method
is problem dependent, our experience has shown that the optimal
value of the sweeps are three to four for DPLR, one to two for FM-
Hybrid, one for hybrid LU-SGS, and four for DP-LUR for most of
the problems. In a similar study, Wright32 used four inner sweeps
for DP-LUR and DPLR methods because of cost effectiveness and
improved stability. In another study by Wissink,11 one inner sweep
usually showed slightly better performance than two inner sweeps
for the hybrid LU-SGS method. Therefore, for the rest of this study
four inner sweepswill be used for DP-LUR and DPLR methods,and
one inner sweep will be used for hybrid LU-SGS and FM-Hybrid
methods.Figure 9 compares the performanceof the parallel implicit
operators using these typical values of the inner sweeps, and it is
apparent that there is no signi� cant differencewhen optimal values
of inner sweeps are used.

NACA 0012 Airfoil (CARmax D 22000)
The � nal two-dimensionalcase tested is identical to the preceding

one except that the grid clustering is increased near the body. This
is done to investigate how well DPLR and FM-Hybrid perform

Fig. 8 Comparison of parallel implicit operators for optimal number
of inner sweeps (NACA 0012, CARmax = 2200).

Fig. 9 Comparison of parallel implicit operators for typical number
of inner sweeps (NACA 0012, CARmax = 2200).

compared to the diagonal methods for very high CAR grids. The
number of grid points in wraparound and normal directions are
137£ 50, as in the preceding cases. The computational grid used
for this case has a maximum CAR of 22,000.

Figure 10 shows the wallclock time vs global density residual for
the implicit operators. This time, the convergence criterion is met
for DPLR and FM-Hybrid methods in 8.49 and 10.50 s, whereas
the density residual goes down to 1.19E¡08 in 70.17 s for hybrid
LU-SGS and 2.50E¡08 in 72.00 s for DP-LUR.

Thus, the increase in the CAR of the grid does not effect the con-
vergence rate of the full matrix methods, whereas it slows the con-
vergence rate of the diagonal methods. The DPLR and FM-Hybrid
methods show comparable performance, with DPLR performing
slightly better and both outperforming the diagonal methods. This
conclusion does not change, according to a previous study,33 where
the same 1¿ was used for all methods.

Three-Dimensional Viscous Quasi-Steady Results
For the three-dimensionalquasi-steadycases, theoperationalload

survey(OLS) rotorbladeof anAH-1 helicopteris selected.The OLS
rotor has an aspect ratio of 9.22 and a maximum thickness ratio of
9.71% chord. The test case examined has a tip Mach number of
0.664 and an advance ratio of 0.258 with a Reynolds number of
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Fig. 10 Comparison of parallel implicit operators (NACA 0012,
CARmax = 22;000).

Fig. 11 Three-dimensional Navier–Stokes grid.

2:75 £ 106. In a quasi-steady computation, the blade is � xed, and
the air is circulated around the rotor. In forward-� ight cases, an
additional freestream � ow is imposed.

The calculations are performed on a 137 £ 50 £ 50 body-
conforming grid, constructed by stacking and bending two-
dimensionalC–H-typegrids.The minimumspacingof thegrid in the
normaldirectionnear the surface is 0.0001chords.This corresponds
approximately to a maximum CAR of 12,000. The partitioning of
the grid is done in the wraparound and radial directions. Each pro-
cessor has 17 grid points in the wraparounddirection,14 grid points
in the radial direction, and 50 grid points in the normal direction.
The three-dimensionalgrid is shown in Fig. 11.

Fig. 12 Comparison of parallel implicit operators (three-dimensional
OLS).

Figure 12 is a comparison of the four methods with each other.
FM-Hybrid performs better than any other method. The compu-
tational intensity of DPLR enters the picture with this test case.
Although DPLR requires a lower number of iterations, overall FM-
Hybrid is approximately three times faster. This is because a DPLR
iteration is approximately 2.5 times slower than an FM-Hybrid
iteration. The high CAR of the grid is apparently effecting the
convergence rate of the diagonal methods. As a result, the FM-
Hybrid method performs better than any other methods used for
this problem.

Three-Dimensional Viscous Time-Accurate Unsteady Results
The three-dimensionalunsteady computationsare performed for

the same con� guration used in the preceding section. The quasi-
steady solution at 9 D 0 deg is used as the starting solution, and
time-accurate calculations are performed for one full revolution of
the blade. Constant time steps are used for all of the methods. At
each time iteration, the whole computationalgrid is rotated with the
blade, and three relaxation iterations are performed. The reason for
using relaxation iterations is to reduce the factorization error in the
implicit operator.

First, an unsteady solution is obtained for a very small time step
that corresponds to a 1

20
deg azimuth per time step using the FM-

Hybrid operator. The FM-Hybrid operator is chosen for this run
because it uses exact forms of the Jacobians on the left-hand side
of the system. The pressure coef� cient is evaluated at the quarter
chord and a radial position of r=R D 0:864 of the blade. This time-
accurate pressure coef� cient is then used as a baseline solution, and
results obtained by using larger time steps are compared with it. In
our computations,we found that smaller time steps for DPLR had to
be used because of the inherent time-step restrictionsof the method
compared to the rest of the operators. Therefore, for time-accurate
calculations we concluded that DPLR is not ef� cient, and results
from this method will not be presented. This may be due to the
explicit boundary conditions used in TURNS, which are dif� cult
to change to the implicit boundary conditions needed for the best
convergencewith DPLR.

A time step corresponding to 19 D 0:10 deg azimuth angle is
usedfor the runs,and relativeerror in pressurecoef� cientscompared
to the baseline solution is plotted in Fig. 13. It can be seen from
Fig. 13 that the FM-Hybrid method has a smaller error compared
to the hybrid LU-SGS and DP-LUR methods. Therefore, one can
obtain the same level of accuracyeitherby using larger time stepsor
a smaller number of subiterations for FM-Hybrid. Figure 14 shows
the error for three subiterations when 19 D 0:10 deg is used for
hybrid LU-SGS and DP-LUR and 19 D 0:50 deg is used for FM-
Hybrid. Also shown in Fig. 14 is the error for FM-Hybrid for a
single subiteration and 19 D 0:10 deg. It is apparent that the error
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Table 1 Comparison of implicit operators for unsteady calculations

Method 19 , deg Subiterations Average error Wallclock time, s

FM-Hybrid 0.50 3 9:01 £ 10¡4 1700
FM-Hybrid 0.10 1 5:37 £ 10¡4 2777
FM-Hybrid 0.10 3 0:86 £ 10¡4 8458
Hybrid LU-SGS 0.10 3 15:2 £ 10¡4 6119
DP-LUR 0.10 3 9:91 £ 10¡4 10643

Fig. 13 Unsteady Cp error for implicit operators: three subiterations.

Fig. 14 Unsteady Cp error for implicit operators.

for FM-Hybrid using either larger time steps or a smaller number of
subiterations is comparable with the errors for hybrid LU-SGS and
DP-LUR.

The average of the errors and the total time required for different
methods are given in Table 1. The use of larger time steps for the
FM-Hybrid method yields faster overall solution times, although
it is slower for each iteration for the same level of accuracy. For
the case where three subiterations are used for all methods and
19 D 0:50 deg for FM-Hybrid and 19 D 0:10 deg for hybrid LU-
SGS and DP-LUR, FM-Hybrid yields 72 and 84% solution time
savings over hybrid LU-SGS and DP-LUR, respectively,with sim-
ilar error levels. When the azimuth increment is � xed to 0:10 deg
and single subiteration is used for FM-Hybrid, one can obtain 55%
savings over hybrid LU-SGS and 74% savings over DP-LUR.

Parallel Performance
Previously,the Euler mode ofTURNS was modi� ed byWissink11

for parallel architectures. In that study (compared to the computa-
tional time required on a single CPU Cray C-90), the new program
resulted in a 12-fold decrease for hybrid LU-SGS and an 8-fold
decrease for DP-LUR on 114 processors of an IBM SP2 computer.
With the current improvements to the implicit solvers, we expect
faster computation times.

To investigate the parallel ef� ciency of the implicit operators im-
plemented in TURNS, the three-dimensional viscous quasi-steady
case studied earlier is run for different number of processors. The
iterations are stopped when the global density residual dropped to
1E ¡ 08. The minimum number of processors used in this study is
nine. Therefore, the parallel speedup for the algorithms is de� ned
by T .9/=T .P/, where T .P/ is the total time requiredwhen P num-
ber of processors are used. In that sense, the ideal curve speedup is
de� ned as P=9.

The parallel speedup of the methods is presented in Fig. 15. It
is seen that both of the methods have very good speedups. FM-
Hybrid has superlinear speedup, whereas DPLR is just below the
ideal speedup line. Having a superlinear speedup indicates that the
cache misses are reduced as we increase the number of processors.
Although not shown here, the parallel speedup could be affected
when more number of processors are used for the calculations.Be-
cause there are few number of points in one direction, the use of the
values from the previous time step at the boundaries could degrade
the convergenceresulting in less ef� cient calculations.For more re-
alistic calculations with larger grids, a larger number of processors
is possible.

As mentioned before, the parallel performance of the implicit
methods is based on the three-dimensional viscous quasi-steady
calculations. However, note that the parallel performance is simi-
lar for two-dimensionalviscous steady-stateand three-dimensional
viscous unsteady calculations.

Also investigatedin this section is thepercentageof the time spent
in communicationfor the two-dimensionalviscousproblem.The re-
sults are presented in Table 2 for both 9 and 27 processors used in

Table 2 Percentage of the time spent for different implicit operators
for the two-dimensional problem

Method isweep Number of processors Communication %

DPLR 4 9 10.5
DPLR 4 27 23.4
FM-Hybrid 1 9 11.0
FM-Hybrid 1 27 21.4
Hybrid LU-SGS 1 9 12.7
Hybrid LU-SGS 1 27 25.8
DP-LUR 4 9 14.3
DP-LUR 4 27 28.7

Fig. 15 Parallel speedup of implicit operators.
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the solutionof this problem. It appears that the percent of communi-
cation for all methods seems somewhat high. This is mainly due to
the relativelysmall problemsize, that is, 850 and 350 grid points per
processor for 9 and 27 processors, respectively. If a larger problem
were used, all of the costs such as timers and barrier synchroniza-
tions that appear arti� cially high in the smaller problem would be
lower. Also, note that when the number of processors is increased,
the percent communication increases. There are two main reasons
for this. First, the absolute communication time increases, and sec-
ond, because the number of grid points per processordecreases, the
computational intensity decreases. One can also see that the com-
municationpercentagefor the full matrix methodsare lower than the
diagonal methods. This is mainly because full matrix methods are
more computationallyintensive compared to the diagonal methods,
which can mask the communication time better.

Conclusions
Parallelizationtechniquesfor rotorcraft aerodynamicswere stud-

ied. Two algorithmic changes are made for the ef� cient paralleliza-
tion of the Navier–Stokes mode of TURNS.

A new implicit operator, FM-Hybrid, based on the hybrid LU-
SGS operator of Wissink11 and the DPLR implicit operator devel-
oped by Wright et al.,16 has been implemented in TURNS. Both the
hybrid LU-SGS and DPLR methods use the exact � ux Jacobians
and remove the spectral radius approach in the LU-SGS algorithm.
The main reason for using exact forms of the Jacobians is to remove
the overstabilizing effect of the spectral radius approximation for
high CAR grids, which are needed for viscous computations.

The operators are parallelized using message passing, and their
ef� ciency is compared with DP-LUR and hybrid LU-SGS methods
on an IBM SP2 supercomputer.Remarkable performance increase
over the diagonal methods has been obtained with the implementa-
tion of these operators. The FM-Hybrid method seems to perform
slightly better than DPLR in the three-dimensional, quasi-steady
Navier–Stokes case. On the other hand, the DPLR method performs
better than FM-Hybrid for two-dimensional test cases regardless of
the maximum CAR of the grid. We have also tested these opera-
tors for the � rst time for unsteady three-dimensional calculations.
We found that DPLR is not ef� cient for time-accurate calculations.
However,FM-Hybridperformsbetter than thediagonal-basedmeth-
ods, and signi� cant CPU time savings, for example, 72% vs hybrid
LU-SGS and 84% vs DP-LUR, can obtained.
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